Cystathionine β-Synthase Inhibition Is a Potential Therapeutic Approach to Treatment of Ischemic Injury
نویسندگان
چکیده
Hydrogen sulfide (H2S) has been reported to exacerbate stroke outcome in experimental models. Cystathionine β-synthase (CBS) has been implicated as the predominant H2S-producing enzyme in central nervous system. When SH-SY5Y cells were transfected to overexpress CBS, these cells were able to synthesize H2S when exposed to high levels of enzyme substrates but not substrate concentrations that may reflect normal physiological conditions. At the same time, these cells demonstrated exacerbated cell death when subjected to oxygen and glucose deprivation (OGD) together with high substrate concentrations, indicating that H2S production has a detrimental effect on cell survival. This effect could be abolished by CBS inhibition. The same effect was observed with primary astrocytes exposed to OGD and high substrates or sodium hydrosulfide. In addition, CBS was upregulated and activated by truncation in primary astrocytes subjected to OGD. When rats were subjected to permanent middle cerebral artery occlusion, CBS activation was also observed. These results imply that in acute ischemic conditions, CBS is upregulated and activated by truncation causing an increased production of H2S, which exacerbate the ischemic injuries. Therefore, CBS inhibition may be a viable approach to stroke treatment.
منابع مشابه
Hydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine β-synthase (CBS) after cerebral ischemia- reperfusion in rats
Objective(s): This study aimed to evaluate the potential role of hydrogen in rats after cerebral ischemic/reperfusion (I/R) injury. Materials and Methods: The experimental samples were composed of sham group, model group of rats that received middle cerebral artery occlusion (MCAO) for 2 hr followed by reperfusion for 24 hr, and the hydr...
متن کاملInhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats
Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...
متن کاملProduction of Hydrogen Sulfide from D-Cysteine and Its Therapeutic Potential
Accumulating evidence shows that H2S has physiological functions in various tissues and organs. It includes regulation of neuronal activity, vascular tension, a release of insulin, and protection of the heart, kidney, and brain from ischemic insult. H2S is produced by enzymes from l-cysteine; cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase (3MST) along ...
متن کاملP 149: Effect of Glycoprotein IIb/IIIa Inhibition on Acute Ischemic Stroke Injuries
Ischemic stroke accounts for about 87 percent of all cases. It occurs as a result of an obstruction within a vessel of the brain and sudden loss of blood circulation to the corresponding area resulting in the loss of brain function. It is caused by thrombotic or embolic occlusion of an artery and is more common than hemorrhagic stroke. We know that most of the injuries after an acute ischemic s...
متن کاملA comprehensive approach to investigate the contradictory effects of metformin therapy in cerebral ischemic injury
Ischemic brain injury involves a complex sequence of excitetoxic and oxidative events. Metformin is proposed as one of the potential candidates for returning the body to its basic homeostasis in ischemic situations. Metformin can either protect or damage cells by activating AMP-activated protein kinase (AMPK) and its downstream factors so, it has a dual role in the cerebral ischemia context, bu...
متن کامل